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In some papers concerned with the exact solution of the equations
of a nonrelativistic single-energy beam of charged particles (e.g.,
[1, 21), the opinion has been expressed that, while the method of
separation of the variables has possibilities, serious difficulties can
arise in obtaining the actual systems with separated variables. In
particular, it has become popular, when investigating regular elec-
trostatic flows, to transform to a coordinate system connected with
the trajectory. In this system the velocity vector only has one com—
ponent, say V = {rn, 0, 0},so that flow only occurs in the x! di-
rection (x flow). We shall also refer to a single-component flow,

as in [3). This method is thought (e.g., [4]) to be effective for a
wide class of flows. The question of the coordinate systems that al-
low flows in the x! direction is more specialized than the general
problem of separation of variables.

The concept of an x! flow is discussed in §1 from the point of view
of its utility for obtaining solutions of the regular electrostatic beam
equations. Transformation to a coordinate system connected with the
trajectory is found to be only justifiable for four orthogonal systems:
cartesian, cylindrical, helical-cylindrical, and spherical. It is shown
that, in the case of two-dimensional systems on 2 plane with con-
formal metric, the condition required for an x! flow and the condi-
tions for the space to be euclidean can be used effectively to estab-
lish the existence in the given class of coordinate systems of an <
flow starting from a fictitious emitter (§2). The usual tensor notation
is employed.

§1. Following [5], a flow will be called regular if
the generalized momentum is a potential vector. In
the absence of an external magnetic field, H= 0 (elec-
trostatic beam), this is equivalent to having
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where W is the action referred to the particle mass,
and vj are the covariant velocity components. A sin-
gle-energy regular nonrelativistic beam of particles
of like charge is described in the stationary case with
H =0 [3, 6] by a single nonlinear fourth order differ-
ential equation in W. In a curvilinear coordinate sys-
tem xi (i =1, 2, 3), the metric in which is given by

dS® = g dat dat, a.1)

the equation in question is
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In the case of a flow in the x' direction, this be-
comes [3, 7]
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where F(x?, x%) is a function resulting from integra-
tion with respect to x!, and f(x) = f(x!, x% x).

Several authors [7-12] have considered the nec-
essary and sufficient conditions for a single-compo-
nent flow in the x! direction: when these are satis-
fied, (1.3) becomes an ordinary differential equation
in w(xi). The sufficient conditions for x! flow are giv-
en in [7] as

f(z) = @ (HYF (2, 29, hz) =¥ (z). (1.4)
Examples of solutions for which (1.4) are not sat-
isfied are mentioned in [8, 9]. The example in [8] is
plane flow along hyperbolic trajectories with constant
space charge density, first discussed in [13], for

which
f(2) = 4& [(z* + (2%?],
2t = 1, (22 — ),

h (x) f— [(xl)2 + (xi)i]'l ’
z? = zy, W = 2, (1.5)

where x, y are Cartesian coordinates. It is shown in
[9] that for the plane periodic flow described in {14]

f(z) = 16 [1 — 2 exp (2?) cos 2! + exp (2z%)],
z! = Re (2i In sc 2),

W = ai,

2 = Im (2i In sc z),

z=2z+ 1y, (1.86)

Solutions (1.5) and (1.6) correspond to flows which
may not start from the actual emitter. In [9], a solu-
tion is quoted which defines space-charge-limited
emission from the plane y = 0:

zl = e**Y (y), 22 dy,

aY
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W = z! (a=const),
where Y is a function satisfying an ordinary differen-
tial equation [1]; the solution (1.7) is found by separa-
tion of the variables. Notice that (1.7), like other solu-
tions of the form W = K(xl)L(xz), is invariant [15]. The
metric of system (1.7) again does not satisfy condi-
tions (1. 4).

It is shown in [16, 17] that when Eqgs. (1.4) are sat-
isfied single-component flows are only possible in four
orthogonal coordinate systems: Cartesian x, y, z;
cylindrical R, ¢, z; helical-cylindrical gy, q,, z; and
and spherical r, 9, . The class of coordinate sys-
tems considered in [17] is wider than in [16]. It was
found that the trajectories could be straight lines, cir-
cles, or helices. Let us try to see why there should
be so few possible trajectories: whether it is that con-
ditions (1.4) are not sufficiently general, or for some
other reason.
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Undoubtedly, any regular flow can be represented
as a single-component flow by taking the particle tra-
jectory as one of the coordinate axes and putting xl=
= W. In this coordinate system the covariant velocity
component is unity vi =1 (v, = v3 = 0), and from (1.3)
the necessary condition for x! flow becomes (8]

f @k (z) = F (2, &9). (1.8)

The whole point is whether the concept of single~
component flow is advantageous for describing a giv-
en regular flow,

The transformation from a fixed coordinate system
to a system connected with the trajectory implies,
mathematically, an attempt to reduce the partial dif-
ferential equation (1.2) to an ordinary differential equa-
tion. It is shown in [17] that this is a more specialized
problem than the problem of separating the variables
in (1.2). It is hardly surprising that the variables can
be separated for the equation in a limited number of
coordinate systems.

The examples of [8, 9] encouraged other authors
[10-12] to look for more general (formally speaking)
sufficient conditions for x! flow. The conditions quoted
in [11] are

1 (z) = ® (@) (2%, 2°) + G (2),

f(@h(z) =¥ (@YF (2%, 2% + H(z), (1.9)
where the functions G(x), H(x), w(x') are connected by
the equation
dw
G(z)m+wdi+H(x)w= 0.

drt  daxt

The conditions (1.4), (1.9) were shown in [17] to
relate to two qualitatively different classes of flow.
When (1.9) are satisfied, the order of the equation
for w is lowered, with the result that the two condi-
tions cannot be satisfied on the emitter because of
this differential equation. It is obviously possible in
principle to satisfy them by arranging the metric of
the coordinate system in which the flow is single-
component, since ¢ = g“w/z. However, this device,
like the necessary condition (1. 8), has no practical
value, since the coordinates involving these special
properties of the metric tensor can only be determined
after finding the relevant solution by some other meth-
od (that does not involve the single-component proper-
ty). Hence the solutions for which (1.9) hold, and
which one can hope to find by using the concept of x'
flow, are degenerate and cannot describe the flow
from an actual emitter.

The following three cases are now possible:

1) The problems of finding the coordinate system
in which single-component flow is possible, and of
integrating the ordinary differential equation deter-
mining this flow, are approached independently of
one another. This is essentially the approach adopted
in [17], and the concept of single-component flow
proves useful here.

2) In addition to the solutions W = W(x‘) investigated
in [17], there are solutions [18] of the more general
type W = Kx1)L&x*)M(x®); for these, the coordinate
system involving single-component flow is found after
solving the ordinary differential equation; this is the
case for (1.7) and all other invariant solutions.

3) The coordinate system in which the flow is in
the x' direction can be found after solving the initial
partial differential equation (1.2).

The concept of x! flow clearly has no practical
value in either the second or the third case.

§2. It will be shown that some positive results can
be achieved by utilizing the necessary condition (1. 8).
The discussion will be confined to plane single-compo-
nent flows in coordinate systems with the conformal
metric

! = Re k (z), 2 = Im k (2),
gu =g =Vg =z+h) @.1)
In this case, condition (1.8) becomes
1 dg \3 / 8g \2 -
4?[(5;1) +(-3?’)]'_F(x’) (22)

In addition to satisfying (2.2), the metric must be
Fuclidean. The latter implies the vanishing of the
Riemann-Christoffel tensor

R?rst = 0)

or satisfaction of the six Lamé identities, five of
which are automatic in the plane case, while the sixth
becomes, recalling (2.1) [17],

g d2g 1 [[0g\? og\?
(8a1y? + (822) - _g‘ U’g;i) + {312) ] .
1°. Consider first whether coordinate systems

exist for which g = a(x!)B(x?) and in which x! flow is
possible. Solution of (2.2) and (2.3) gives

2.3)

g = aexp (br?) (a, b =const) - @.4)
This gives the coordinates x' = y, x*=In R and
shows that flow is possible in the ¥ direction. Noting
that for solutions of the type considered in this sec-

tion,

(o2 1 11 __t 8 = ik 98"
le—(g ) ’ P = /2g 1 P—Z E-ax,‘(]/gé 8;")'
the following expressions are obtained for the physi-
cal velocity component vy, the potential ¢, the space
charge density p and the action W:
p=2R" W=1v%.215)

vy = R—lr (P = 1/2 R-zv

The existence of solution (2.5) is shown in [10]; it is
written in terms of dimensionless flow parameters,

2°, Consider whether x! flows can exist in coordi-
nate systems for which

g = lo (zV) + B (2B 2.6)
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Here, (2.2) and (2.3) give

’e

a =dqay

a? +§% =(a + B) lao + B"),
ay = const . (2.7)
These formulas hold provided

(1) BB — B +ap = const,

B = const; (2) @ = const.

It can be shown that, when o = const, the solution
leads to (2.4). In case (1), we have

B (2) = Ts o (27,

g = {{/z (&) + (227,

a (1) = Y, a, (21,
(2. 8)
The equation for g in (2. 8) is the same as (1.5), apart

from a constant factor. This is therefore the only so-
lution with a metric defined by an expression of the

type (2.6).
3°, Now let the determinant of the metric tensor
be given by

g = la (23 + B (zy (sH)]. (2.9)

Using (2.2) and (2.3), we get

By + Py’ = 4F —a”
@+ By By + By +a’) = B + (@ + by €10

It follows at once from the first equation of (2. 10)
that y" = + a®y. The case when y" = —a’y proves to be
meaningless. Consequently,

y = A ch az® + B sh aa?,
B =Ccosaz* +Dsinaxr + E/a®

(4, B, C, D, E, a=const). {2.11)

Substituting (2, 11) into the second equation of (2.10),
we get the unique solution

o (2%) = oy + a; exp (2a2?) — exp (az?),
¥ (#%) = exp (az?)
p (z!) = C cos az* + D sin azx' 4 1, C* 4+ D% = 4g42,.
Finally,
g = la, +a;exp (2az?)+ A cos (az' + 8) exp (az?)]"1.(2.12)
The coordinate system leading to (2.12) is given
by (2.1), with

k(z) = a ' (2ilnsc z 4+ b). (2.13)

Apart from a real factor a~! and a complex con-
stant b =4 + iv, (2.13) is the same as k(z) given by
(1.6).

It can be shown that (2.2), (2.3) have no solutions
with g = [a (2" (z® + ¥ (zY)8 (28]}, other than (2. 8) and

(2.12), and no solutions withg =o (21 (22) + v (z1)8 (2¥).

It is clear from the above examples that condition
(1.8), and the condifion that the space be Euclidean,
can be used effectively to establish the existence in

a given class of coordinate systems of z single-com-
ponent flow which does not originate from the actual
emitter,
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